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ABSTRACT 

This paper studies the existence and properties of a torsion-free cover with 
respect to a faithful hereditary torsion theory (Y ,  ,.~-) of modules over a ring 
with unity. A direct sum of a finite number of torsion-free covers of modules 
is the torsion-free cover of the direct sum of the modules. The concept of a 
3"-neat homomorphism, which generalizes Enochs' definition of a neat sub- 
module, is introduced and studied. This allows the generalization of a result of 
Enochs on liftings of homomorphisms. Hereditary torsion theories for which 
every module has a torsion-free cover are called universally covering. If the in- 
clusion map of R into the appropriate quotient ring Q is a left localization in the 
sense of Silver, the problem of the existence of universally-covering torsion 
theories can be reduced to the case R =  Q. As a consequence, many sufficient 
conditions for a hereditary torsion theory to be universally covering are ob- 
tained. For a universally-covering hereditary torsion theory ( Y ,  ~ ) ,  the 
following conditions are equivalent: (1) the product of Y-neat  homomorphisms 
is always Y-neat;  (2) the product of torsion-free covers is always J ' -neat ;  
(3) every nonzero module in J -  has a nonzero socle. 

O. Introduction 

The concept  o f  a tors ion-free cover  for the usual  tors ion theory  over  an in tegra l  

d o m a i n  was in t roduced  by Enochs  [3, 4]. The definit ion o f  tors ion-free  cover was 

extended to perfect  tors ion  theories by Banaschewski  [1]  and  to fai thful  hered i ta ry  

tors ion theories by Teply  [11]. 

In  this paper  we cont inue the  s tudy o f  tors ion-free  covers with respect  to  

fa i thful  hered i ta ry  to rs ion  theories  o f  modules  over  a r ing with unity.  The first 

sect ion summarizes  our  no ta t ion  and  terminology.  

In  Section 2, we examine  the proper t ies  o f  a tors ion-free  cover.  F o r  example ,  

the direct  sum of  the tors ion-free  covers of  modules  M~ (i = 1,2, . . . ,  n) is the  

tors ion-free  cover  o f  @ ~= 1 Mi. We also in t roduce  the concept  of  relat ive neatness 

which al lows us to general ize the ma in  resul t  of  [4]  on liftings o f  h o m o m o r p h i s m s .  

In  Sect ion 3, we consider  those tors ion  theories for  which every modu le  has a 

tors ion-free cover.  Such tors ion  theories are cal led universal ly  covering.  I f  the 

Received May 21, 1972 and in revised form February 1, 1973 

237 



238 J.S. GOLAN AND M. L. TEPLY Israel J. Math., 

inclusion of R into the quotient ring Q of the theory is a left localization in the 

sense of Silver [9], then the problem reduces to the case R = Q (Theorem 3.4.) 

This allows us to deduce as corollaries that perfect torsion theories and torsion 

theories with noetherian quotient rings are universally covering. If the quotient 

ring for a primary torsion theory in the sense of Dickson [2] is a proper left lo- 

calization, then that theory is universally covering. If the localization functor of 

a torsion theory is exact, then the theory is universally covering if and only if it 

is perfect (Theorem 3.13). In particular, if R is left hereditary, then a torsion 

theory is perfect if and only if it is universally covering; and if R is left semi- 

hereditary, then a sufficient condition for a torsion theory to be universally covering 

is that its associated filter have a cofinal subset of finitely generated left ideals. 

The final section studies products of torsion-free covers for universally covering 

torsion theories. 

1. Preliminaries 

Throughout the following, R will denote an associative ring with unit element 1 

and all modules and morphisms will be taken from the category R-mod of unitary 

left R-modules unless the contrary is specifically indicated. Morphisms will 

always be written as acting on the side opposite scalar multiplication. The injective 

hull of a module will be denoted by E(M). 
A torsion theory on R-mod, which was first introduced by Dickson [-2], con- 

sists of a pair (Y, ~') of classes of modules satisfying the conditions 

5- = {RT [ Hom R (T, F) = 0 for all F ~ ~'} 

and ~" = {RF [ HomR(T, F) = 0 for all T e 3-}. 

The modules in 5- are called torsion; the modules in ~ are called torsion-free. 
A submodule N of a module M is called J--pure in M if M/N~ ~-. Every module 

M has a unique maximal Y-pure torsion submodule Y(M), called the torsion 

submodule of M. 

A torsion theory (Y, ~ )  is called hereditary if 5- is closed under submodules. 

Given a hereditary torsion theory (~Y-, o~-), a submodule N of M is called J--dense 

in M if M/N ~ Y .  The set ~a of J--dense left ideals of R forms an idempotent 

filter [5]. If HomR (M, V) ~ Hom~ (N, V) ~ 0 is exact for every J-dense sub- 

module N of M, then the module V is called gr-injective. For each module M, 
there is a smallest Y-injective submodule E~-(M) of E(M), which is called the 

~--injective hull of M; Ea-(M ) is unique up to isomorphism [8]. Let N be the 

class of all Y-injective modules in o~; then g is precisely the class of all members 
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of o~- which are Y-pure in every torsion-free module containing them. For a 

module M, the quotient module of M is Q~(M) = Ea-(M/3-(M)). The endo- 

morphism ring of Q~-(R) is called the quotient tiny of R with respect to ( 3 ,  ~ )  

and is denoted by Q j-. If R e ~ ,  then ( J , .~ - )  is called faithful. For faithful 

hereditary torsion theories, R can be canonically embedded in Qs~, and 

Q~- -~ Qg-(R) as left R-modules. In addition, if M e  ~-, then Eg-(M) is canonically 

a left QTmodule .  The classes J- ,  ~-, ~r and d ~ uniquely determine each other; 

therefore, to specify the hereditary torsion theory, it suffices to determine any 

one of these four classes. 

Unless stated otherwise, in the remainder of this paper (3-,o~) will always 

denote a faithful hereditary torsion theory on R-mod, and g andlL6' will always 

denote the classes defined in the preceding paragraph. For the basic properties 

of the above concepts, the reader should consult [2, 5, 6, 8, 10]. 

A ring homomorphism R - .  S is called a left localization [9] if it is an epi- 

morphism in the category of rings and S R is flat. If S ~ R, then the left localization 

is said to be proper. 

PROPOSITION 1.1. The following conditions are equivalent for (~'-,~). 

(1) If  M~o~, then Qs~| 

(2) If  MeoW', ~M: Q~ | M~Q~-(M):Z(qi | mi)~Eqimi is a monomorphism. 

(3) The ring inclusion R--* Qg- is a left localization. 

PROOf. By straightforward computation, the reader can verify that ker(~M) 

= J-(Q~- | M), and consequently (1),~ (2). 

From (2) it follows that ~os: Qg-| Qsr is an isomorphism and hence 

R ~ Q~- is an epimorphism in the category of rings by [9, Prop. 1.1]. Since each 

left ideal I is torsion free, (2)implies that Q~ @RI ~ Q~-@R R --- Q~- is a mono- 

morphism. Thus Q~- is flat as a right R-module [7, p. 132]; so (2) =~ (3). 

Finally, (3) =~ (1) is easily deduced from I-9, Prop. 1.7]. 

2. Torsion-free covers 

If d is a class of left R-modules, then we denote by r c - l ( d )  the class of all 

epimorphisms g: RU ~ R V  such that for any member A of d ,  any diagram of  

the form of Fig 1. can be completed commutatively. An epimorphism #: F --> M 

is called an ~'-precover provided that F e o~ and that/1 e re- i(o~-). An o~-precover 

is called an ~-cover provided that no nonzero 3"-pure submodules of F are 
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A 
/////"l 

O " V  , ,0  

Fig, 1 

contained in ker (/0. The concept of a torsion-free cover has been studied for the 

special case of integral domains in [3, 4] and for abstract torsion theories (~--, ~-) 

in [11]. If  the ~-cover  of a module M exists, it is known to be unique up to 

isomorphism (see proof of [11, Theorem 2.4]), and we denote it by ~ (M) .  

The next lemma shows why, in studying torsion-free covers, it is reasonable 

to limit ourselves to faithful torsion theories. For the following lemma only, 

we will drop our standing assumption that (~-, o~) is faithful. 

LEMMA 2.1. I f  ( Y , ~ )  is an arbitrary torsion theory and R has an ~-- 

precover, then every module cogenerated by R is torsion free. In particular, 

every projective module is torsion free. 

PROOF. Let #: F ~ R be an ~--precover. For x ~ F, 3"(R)x ~ J -  n ~" = O. 

Therefore J-(R)F = 0, and so 0 = J-(R)FI~ = J-(R)R = J-(R). Therefore 

R ~ ~ .  Since ~ is closed under submodules and direct products, any module 

cogenerated by R is also in o~-. 

Except for [-4, Cor. 2, p. 43], all of the results proved by Enochs in the first 

two sections of [-4] for the special case of the standard torsion theory over an 

integral domain generalize directly to abstract torsion theories. 

The following theorem shows that, in some sense, the property of being an 

~ is " local" .  

THEOREM 2.2. Let I~: F ~ M be an epimorphism from a torsion-free module 

F onto a module M, and let M be a directed union of a set of its submodules (Ni). 

I f  the restriction I~i of lt to Ni# -1 is an ~'-cover for each i, then # is an ~-cover.  

PROOF. For each i let Fi = N~# -1, and let oi: F i e F  be the inclusion map. 

Then F is the directed union of the F v If  G ~ and if ~ ~ Horn (G, M),  set 

G~ = Ni0~ -1 for each i. Since/~i ~ 7r-1(~ there exists fli ~ Hom(Gi, F~) such that 

flil~, = ~1~," Since G is the directed union of the Gi, there is a unique homo- 

morphism fl: G ~ F, the restriction of which to any G~ is flio'i. Thus fl# = 0q 

and so Fte zc-l(~'). 

If H is a 3"-pure submodule of F contained in ker (/0, then Ho-~- 1 ~ ker (/O for 
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each i. Each cr i induces a monomorphism Fi/Ho i- 1-~F/H. Therefore FjHaT, 1~ ~-, 

which forces Ha-~ 1 = 0; thus H = 0. Hence #: F ~ M is an ~'-cover. 

COROLLhRY 2.3. An epimorphism #: F ~ M from a torsion-free module F to 

a module M is an o~'-cover if the restriction of # to the inverse image of any 

finitely-generated submodule of M is an ~'-cover. 

PROPOSn'ION 2.4. Let M be a module having an ~--cover. Then M is ~--- 

injective [-injective] if and only if ~ ( M )  is 3--injective [injective]. 

PRoov. We will only prove the case of ~---injectivity, since the case of injectivity 

is similar. Assume that M is J--injective. Since E : ( Y ( M ) ) / ~ ( M )  ~: - ,  the J--  

injectivity of M implies the existence of a homomorphism ~ making the diagram 

(Fig. 2) commute (2 canonical). Since ~-(M)~ o~-, so is E:(~-(M)); thus by the 

= ;~{M) - X ' ~  E . ~ M ) )  

Fig. 2 

definition of an ~-cover ,  there is a homomorphism f l : E : ( ~ ( M ) ) ~ ( M )  

satisfying fl# = ~. By a generalization of [3, Th. 2] (see [11, w 2fl is an automor- 

phism of ~-(M), which proves that ~ ( M )  is a direct summand of E : ( ~ ( M ) ) .  

Hence ~-(M) ~ g. 

Conversely, assume that ~ ( M )  is Y-injective. To prove that M is 3-injective, 

it suffices to show that every homomorphism I ~ M can be extended to a homo- 

morphism R ~ M, where I e 5e [-8, Prop. 0.5]. Since R ~ ~ ,  every I in ~ is in ~ ;  

so for any a : l  ~ M, there exists a f l : l ~  ~ ( M )  with a = fl#. Since ~ ( M ) ~  g, 

there then exists a y: R ~ ~-(M) extending fl, and thus y#: R -o M extends ~. 

LEMMA 2.5. Let #: F ~ M be an ~'-cover, and let N be a submodule of M 

such that N# -1 is J--pure in F. Then the restriction of # to N# -~ is an ~-- 

cover of N. 

PROOF. Let G = N # -  1 and let # '  be the restriction of # to G. Clearly # '  is an 

~-precover .  If  W is a J--pure submodule of G contained in ker(#') ,  then the 

exactness of the sequence 

o O/W F/W--, F/G O 
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and the fact that FIG ~o~ imply that F/W ~o~. Since /~ is an o~--cover, then 

W = 0. Therefore, # '  is also an o~--cover. 

COROLLARY 2.6. I f  E(M) has an o~'-cover, so does E: (M) .  

Generalizing a concept introduced in [4], we say that ~ ~ Hom (N, M) is f - n e a t  

if and only if, for each J--dense submodule U of V and each a ~ H o m ( U , N ) ,  

the following conditions are equivalent: 

(i) There exists a submodule W of V properly containing U and a 

z ~ Hom (W, M) such that z [ v = aa. 

(ii) There exists a submodule W' of V properly containing U and a 

z'  ~ Horn (W', N) such that z' ] v = a. 

A straightforward argument establishes that in order to prove that a homo- 

morphism a is 3--neat, it suffices to consider the case V = R. We call a sub- 

module N of a module M J--neat if and only if the inclusion map N ~ M is 

: --neat .  In case R is a commutative integral domain and (~-',o~) is the usual 

torsion theory, our definition of " J - n e a t "  coincides with Enochs' definition 

of "nea t "  in [4]; in the special case where R is the ring of integers, our defini- 

tion of  " f - n e a t "  coincides with the usual definition of  "nea t "  for abelian 

groups. The straightforward generalization of [4, Th. 2.1] shows that every 

o~-cover is a 3"-neat homomorphism. 

The proof  of the following lemma is left to the diagram-chasing of the reader: 

LEMMA 2.7. Let ~: M--* N and fl: N ~ U be R-homomorphisms. Then the 

following statements are valid. 

(1) I f  c~ and fl are both J--neat, so is aft. 

(2) I f  ~fl is J'-neat, then so is ~. 

LEMMA 2.8. The direct sum of a finite number of J--neat homomorphisms 

is Y-neat .  

PROOF. Let ~i: Ui-~Vi (i = 1, . . . ,n)  be 5 - n e a t  homomorphisms, and set 

U = @ Us, V = G V~, and ~ = @ ~:  U-~ V. For  each i, we have the canonical 

projections n~: U ~ Us and n'i: V ~ Vi. 

Let I ~ L~ ~ a: I --* U, and assume that there exists a left ideal K of  R properly 

containing 1 and a homomorphism z: K ~ V, the restriction of which to I is a~. 
Then zrc~ extends arq~l. Hence, by the J '-neatness of ~1, there exists a left ideal 

K1 of  R contained in K and properly containing I and a homomorphism 

01 : K1 --* U1 extending an1. 
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The restriction z~ of  z to K~ extends tra, and hence z:c2' extends trrc20~ 2. Since 

a2 is J--neat,  there then exists a left ideal K 2 of R contained in K1 and properly 

containing I and a homomorphism 02 : K2 ~ U2 extending trrc 2. 

Continuing in this manner, we obtain left ideals 

K 1 _  K 2 ~ ... ~ K n ~ I 

and homomorphisms 0i: K i ~  U~ (i = 1, . . . ,n)  such that each 0i extends ~zq. 

Define 0 : K  n ~ U b y 0 : a  ~ ( a O  1, ...,aOn). For a ~ I, aO = (a01, ..., aO,) 

= (aarq, ..., aan,) = aa; so 0 is a proper extension of  tr. This proves that ~ is 

J - n e a t .  

PROPOSmON 2.9. A submodule of a torsion-free module is J--neat i f  and 

only if  it is J -pure .  

PROOF. Let M e ~-, and let N be a ~J--neat submodule of M. Assume further 

that WIN = ~--(M/N) # 0. If 2: N ~ W is the inclusion map, then by J--neatness 

there is a submodule W' of  W properly containing N and a homomorphism 

p: W ' ~  N such that 2fl is the identity map on N. Thus N is a direct summand 

of  W', which contradicts the fact that W'/N e J - a n d  W'~ ~ ' .  

Conversely, let M e ~ - ,  and let N be : - -pure  in M. Let V / U e J -  and let 

e e Hom (U,N).  Assume that there exists a submodule W of  V properly con- 

taining U and a homomorphism/~: W ~ M, the restriction of which to U equals e. 

Then ]~ induces a homomorphism fi': W/U ~ M / N  given by (w + U)fi' = wfl + N. 

Since W / U e J  and M / N e ~ ,  B' must equal 0, which implies that W/~ ___ N. 

Hence N is J - n e a t  in M. 

PROPOSITION 2.10. I f  F e ~" and if d?: F ~ M is a ~---neat homomorphism, 

then any ~---pure submodule o f F  contained in ker(r  is in g. 

PROOF. Let W be a : - -pure  submodule of F contained in ker (r If I e ~q~ and 

e Hom (I, W), a standard argument yields a maximal extension e ' :  I '  ~ W of  0t, 

where 1 ~_ I '  ~_ R. By [6, Prop. 3.2], it is sufficient to prove that 1' = R. 

If  I '  v~ R, then the 0-homomorphism R ~ M properly extends e ' r  By 

the J -nea tness  of r there exists a left ideal H of R properly containing I '  

and a ~ e H o m ( H , F )  extending ~'. By the maximality of I ' ,  H/~ $ W; so 

0 # [Hfl + W]/W ~ F/W. Since W is ~---pure in F, then [Hfl + W ] / W e ~ .  

But by the maximality of I ' ,  
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[Hfl + W] /W ~- Hfl/[Hfl ~ W] = Hfl/I'fl ~- H/I '  ~ J-,  

and hence [Hfl + W] /W = 0. Thus Hfl ~_ W, which is a contradiction. 

THEOREM 2.11. The direct sum of the ~--covers of a finite number of modules 

is the ~-cover of their direct sum. 

PROOF. Let M 1 , . . . , M  . be modules having ~--covers #i: F i ~ M ~ .  Define 

M = @ Mi, F = @ F i , and # = @ #i: F ~ M. Then # is clearly an c,~-precover. 

By Lemma 2.8, # is ~---neat; so by Proposition 2.10, any J--pure submodule 

contained in ker (#) is in B. Hence it is sufficient to prove by induction on n that 

any submodule of ker (#) in E must equal zero. From the definition of an i f-cover ,  

this is certainly true for n = 1. Assume inductively that there are no nonzero 

submodules of ker( |  in B. Let V be a nonzero submodule of 

k e r ~ k +  1 - t ~ = l  #0 in 8. For  each i, let rc~: V ~ F, be the restriction of the canonical 

projection F ~ F ~ .  Then 7rk+ 1 is not a monomorphism; for otherwise l,'rck+ 1 

would be a nonzero submodule of ker(#k+l) in 8. On the other hand, if rCk§ 1 is 

not a monomorphism, then ker (rCk+ 1) -- ker (ok= 1 #i) and is in B by [-6, Prop. 3.3], 

which contradicts the induction hypothesis. Therefore V = 0. 

PROPOSITION 2.12. Let every 3---neat submodule of M have an ~-cover,  and 

let #: ~(M)---} M be an ~-cover of M. Then the following statements about a 

submodule N of M are equivalent: 

(1) N is a J--neat submodule of M. 

(2) The restriction of # to some J'-neat  submodule of J ( M )  is an ~'-cover 

of N. 

(3) There exists a ~---neat submodule G of ~ ( M )  such that N = G# and 

#]o 

PROOF. (1)=~ (2): If N is a Y--neat submodule of M, then the res- 

triction of # to N#-  1 belongs to re- 1(~).  Using a straightforward modification of  

[4, Prop. 2.3], the reader can easily verify that there exists a direct summand G 

of N # -  a such that the restriction #" o f#  to G is an ~--cover of N. Thus 2'# = #"2, 

where 2' :  G ~ ( M )  and 2: M ~ N  are the inclusion maps. Since #": G - ~ N  is 

an ~-cover ,  #" is ~---neat, and 2 is J - n e a t  by hypothesis. By Lemma 2.7(1), 

#"2 = 2'# is Y--neat, and thus by Lemma 2.7(2), 2' is also g -nea t .  
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(2) => (3): Take G to be the appropriate covering module for N. 

(3) => (1): Suppose that G# = N, where G is 3 -nea t  in ~-(M) and #la 

n -  ~ (So). Let I ~ .2 ~ and let ~ ~ Hom (I, N). Suppose that /~: H ~ M extends 

~, where H is a left ideal of R properly containing I. Then Fig. 3 commutes: 

0 , . I  X" , H  

o: "~ G ~- 3r(M) ,,3 

N ~ 'M 

(2, 2', 2" are the inclusion maps). 

Fig. 3 

Since # l aen - l ( s  there exists ? ~ H o m ( I , G )  satisfying ~ = ?#Iv- Also, 

2' is g--neat by hypothesis, and/~ is g--neat because it is an ~--cover. By Lemma 

2.7, 2'# is J--neat. Moreover, 72'# = ?(# Iv)2= ~2 = fl II. Since 2'# is 3"-neat 

there exists a left ideal K of R proper.y containing ! and a homomorphism 

qS :K~ G, the restriction of which to I equals ?. Hence ~ = ?#Iv = 

so ~b# Iv extends ~ to K. This proves that 2 is J--neat. 

Using terminology analogous to that of [4], we call a homomorphism fl in 

the commutative diagram below a lifting of ~: M ~ N, where M and N are 

modules having respective ~--covers p: ~ - ( M ) ~  M and #' :  o~-(N)~ N (Fig. 4): 

~e 
Y(M] ,, a'(N) 

M , N 

Fig. 4 

By definition of #',  such liftings always exist, but they may not be u:fique. 

THEOREM 2.13. Suppose that every J--neat submodule of M has an ~-cover. 

Let #: ~ ( M ) ~ M  and #': ~ ( N ) - - . N  be o~'-covers, and let fl: ~,~(M)--*~-(N) 

be a lifting of ~: M ~ N. Then the following statements are equivalent: 

(1) fl is an isomorphism. 

(2) (a) a is an epimorphism; 

(b) Ext 1 (G, ker (a)) = 0 for all G ~ ~'; 

(c) ker(~) contains no non-zero J--neat submodules of M; 

(d) I f  U is a J--pure submodule of ~ ( M )  and if Up c_ ker(a), then 

~1 u ~ n - ~ )  �9 
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(3) Every lijting oj ~ is an isomorphism. 

REMARK. If every left ideal in ~ is projective, then condition 2(d) of Theorem 

2.13 holds; so Theorem 2.13 is a generalization of the main result of [4] in which 

Enochs proves the result for the usual torsion theory over a Dedekind domain 

[4, Th. 3.1]. 

PROOf. (1)=~ (2): Since f l # ' =  pa and #' is an epimorphism, c~ is an epi- 

morphism whenever fl is. Thus (1) =~ (2a). 

If  H is a J--neat submodule of ker(a), then by Proposition 2.12 there is a 

Y-neat  submodule G of o~-(M) such that G#=H. Thus to prove that (1) implies 

(2c) and (2d), it is sufficient to prove that any J--neat submodule K of o~-(M) 

with K# __ ker(a) must be zero. By Proposition 2.9, any such K is 3---pure in 

o~(M). Since pa=fl#', (1) implies that Kfl is a J - p u r e  submodule of o~(N) 

contained in ker(#'). Hence Kfl = 0; so by (1), K = 0 as desired. 

It remains to show that (1)=~ (2b). Since p' is an ~--cover and fl is an iso- 

morphism, a simple diagram chase shows that e e 7z-x(o ~ )  and hence that, in 

the following commutative diagram with exact rows, % is an epimorphism (Fig. 5). 

Ext 1 (G,3~M)) J ~ "  Ext 11G,~(N)) 

1, ,1 
,.Ext (G,M) -Ext  (G,N) Hom(G,M} ~ Horn (G,N) "Ext l  (G,ker (a ") 

Fig. 5 

Since fl, is an isomorphism by (1) and since the vertical maps are isomorphisms 

by an easy generalization of [4, Corol. 3, p. 41], then Ext ~ (G, ker (a)) = 0 follows 

from the exactness of the diagram. 

(2 )3 (1 ) :  By 2(a) and 2(b), c~en-l(o~). Thus by the definition of #, there 

exists ~,: ~ - ( N ) ~  o~-(M) such that #' = 7fl#'- Since #' is an ~--cover, ;~fl is an 

automorphism of ~-(N) by a generalization of [3, Th. 2] (see [11, w Thus 

ker (fl) is a summand ofo~(M). Also /~(ker(fl))c ker(~); so /~ [ ke,(~)~ re-1 (~o) 

by 2(d). By Proposition 2.12, ker(#) must be ~---neat in M; so ker(fl) _~ ker(/z) 

by 2(c). Since # is an ~-cover ,  it follows that ker (fl) = 0. 

(3),~(1):  Since condition (2) depends only on ~ and p (and not on fl), it 

follows from (1),~(2) that if one lifting of ~ is an isomorphism, then so is every 

other lifting of ~. 

EXAMPLE 2.14. Let R be a bounded Dedekind prime ring, let M be a maximal 

two-sided ideal such that R / M e ~-- for some (o~, ~ ) .  Then the natural map 
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o~: RIM k ~ R/M" (k > n > 1) is easily seen to satisfy condition (2) of Theorem 

2.13. (The existence of the required covers can be justified by Corollary 3.17 

below.) 

EXAMPLE 2.15. Let R be a 3 x 3 upper triangular matrix ring over a field. 

Let ~-- be the class of singular left R-modules; i.e., let c~a be the set of essential 

left ideals. Set M = Re33/Re13 and N = Re33/Re23, where eli denotes the matrix 

with 1 at the i, j entry and zeros elsewhere. Then the natural homomorphism 

~: M ~ N satisfies condition (2) of Theorem 2.13. (Again the existence of the 

required covers comes from Corollary 3.17 below.) 

EXAMPLE 2.16. Let Y be closed under injective envelopes (see [10, w 

and let M be an indecomposable injective module in .~-. Then M and 0 are the 

only 3---neat submodules of M. Suppose that ,~(M) exists and that all of its 

-~-pure submodules are summands. If ~7(N) exists, then a lifting fl of ct: M ~ N 

is an isomorphism if and only if ~ n - l ( ~ ) .  (Note that Example 2.15 is a 

special case of Example 2.16.) 

3. Universally-covering torsion theories 

A torsion theory ( J ' , . ~ )  on R-rood is called universally covering if and only 

if every left R-module has an ~J-cover. In [3] Enochs proves that the usual torsion 

theory on a commutative integral domain is universally covering. To study such 

theories we begin by introducing a construction based on that given by Bana- 

schewski in I-l]. 

For any module M, define U(M) = H o m n ( Q : ,  E:(M)) and V(M) 

= { ~  U(M)IR~ ~_ M}. Then U(M) is a left Q:-module  with multiplication 

defined by (q')q~t = (q'q)~, and V(M) is an R-submodule of U(M). Note that, 

as R-modules, V(M) is large in U(M). Indeed, if0 r ct ~ U(M), then (1) ct e E:(M). 

By the largeness of M in E:(M), there exists an rER with 0 r r(l)ct ~M.  But 

r(l):t = ( r )~=  (l)rct; so r~ ~ V(M). Also, V(M) is J~-dense in U(M). For ifct ~ U(M), 

then (M:(1)~t)~c~ and (M:(1):t)~_~ V(M); so (V(M):ct)~L~ ,~ A canonical. 

epimorphism y~: U(M)~  E : ( M ) i s  given by ~t ~,(1)~, and V(M) is just Myff :  

Also, yMe rr-~(~Jz-); for if G~.~" and tr: G ~ E : ( M ) ,  then tr can be extended to 

~ : E ~-( G) ~ E~r( M) by 2~--injectivity. Now define z':  G --* U( M) by (g)z': q ~ ( qg)z. 

Then z'yM: 9 ~ (1 )gz '  = (g)z = (g)tr; so ~'~M = a. 

PROPOSITION 3.1. For any module M, U(M)~ ~ if and only if U(M) 

~(E:(M)) .  
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PROOF. The " i f "  part is trivial. Assume that U(M)E~ .  The epimorphism 

YM: U(M)-~E~(M) belongs to 7r-1(~'); so 7 .  is an ~-precover .  Let K be a 

~J-pure submodule of U(M) contained in ker(yM). If  Eqik~Qg-K, then 

I = r3(R: q i ) ~ .  This implies that Qg-K/K~3", which contradicts the J ' -  

purity of K in U(M) unless Q~-K = K. 

Hence K is a Q~--submodule of U(M). If  K ~ 0, then there is an ~ ~ K and 

a q e Q~-with (q)~ ~ 0. But then (1)q~ = (q)~ ~ 0; so q ~  ker (7~). Consequently 

q~ ~ K, which contradicts the fact that K is a Q~--module. Therefore K = 0, and 

hence 7M is an ~-cover .  

THrOREM 3.2. Let S be an overring of a ring R such that the inclusion 

R ~ S is a left localization. Then there is a one-to-one correspondence between 

(1) The class of all faithful hereditary torsion theories (J-,~')  on R-mod 

with Q~- = S, and 

(2) The class of all faithful hereditary torsion theories (~-*,~q~*) on S-mod 

with Q~-, = S. 

PROOF. Let Q~r = S, and set J *  = {sN[gN~~ andW* = { s N I R N ~ } .  

Then J-*  is clearly closed under taking S-submodules, direct sums, S-homomorphic 

images, and group extensions. Also, ~ *  is closed under taking S-submodules, 

direct products, and group extensions. Furthermore, S ~ ~-*. 

If  T e .~-* and F ~ ~v., then Homs(T,  F) = 0. Conversely, we claim that J - (M) 

is an S-submodule of any s M. Indeed, if m e J-(M) and s ~ S, then there is an 

I e ~ with Is ~_ R. For each a ~ I, asm ~ Y'(M), and so there is an H ~ ~ with 

Hasm = 0. This implies that (0: s i n ) ~ r  and hence sme~-(M).  Therefore, 

if  M ~ - - * ,  there is a nonzero S-homomorphism M - ~ M / ~ ' ( M ) ~ * .  Thus 

~-* = {sT lHoms (T, F) = 0 for all F e ~ * } ;  so ( J * ,  J~-*)is a faithful hereditary 

torsion theory on S-rood with Q~-, = S. 

Now assume that (~'1, ~-1) and (~'2, ~-2) are two faithful hereditary torsion 

theories on R-mod with * * ( ~ - ~ , ~ )  = (~-* ,~*) .  Since ~ x  is closed under group 

extensions and submodules, F ~ ~-~~ if and only if SF ~ ~,~*. Similarly, F e ~ 2  if 

and only if SF ~ ~* .  Since ~ *  = 3~-* it follows that ~ 1  = ~'2, and hence 

(~-1, ~-~) = (~'2, ~'2). Thus the correspondence ( J ,  ~ )  ~ (~-*, ~ * )  is monic. 

Conversely, assume that (~-* ,~*)  is a faithful hereditary torsion theory 

on S-mod with Q~r,= S, and let ~" = { R M ] S |  Since Sg is flat, 

5 7" is closed under taking R-modules, direct sums, R-homomorphic images, 
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and group extensions; so Y determines a hereditary torsion theory (5-,o~-). 

Since R ~ S is an epimorphism of rings, for any left S-module N, S |  -- N;  

so Y*  = {s N I N e  j -} .  Finally, since Y*(S) = 0 implies J-(S) = 0, then 

J--(R) = 0; hence ( F ,  o~) is faithful. Clearly Q ~-=  S. Therefore the corres- 

pondence (Y,  o~) ~ ( y * ,  ~-*) is epic. 

PROPOSn'ION 3.3. I f  R - -*Qj  is a left localization and if M e ~ * ,  then M i s 

~-injective if  and only if M is 5"*-injective. (Notation is as in Theorem 3.2). 

PROOF. Let I e 2~ ~ and let c~ e HOmR(I, M). Since R ~ Q :  is a left localization 

it follows from Proposition 1.1 that Q : I  ~- Q j  |  and Q :  |  ~- Q:rM = M. 

Since Q :  is flat, we obtain a Q:-homomorphism e ' :  Q : I  ~ M defined by c~': 

Zq~a~ ~ Z q , ( a : 0  which extends e. If  M is Y*-injective, there is a Q:r-homo- 

morphism fl': Q : - ,  M extending e'. Since the restriction fl of fl' to R extends e, 

M is Y-injective. 

Conversely, if M is Y-injective and if y: I -~ M is a Q:-homomorphism,  then 

there is an R-homomorphism 6 : Q : ~ M  extending y. For  ql, q 2 e Q :  and 

r e ( R :  ql), we have r((qlq2)6 - ql(q2)6) = r(qiq2)6 - (rqt)(q2~) = (rqlq2)~ 

- (rqlq2)(~ = O. 

Since MeoW, it follows that ql(q2)~ = (qlq2)6, which proves that 6 is a Q:-  

homomorphism. Therefore M is J*-inject ive as a Q:-module.  

THEOREM 3.4. Let R ~ Q = Q :  be a left localization, and let J and 5"* 

correspond as in Theorem 3.2. Then the following conditions are equivalent: 

(1) (~--,o~ ~ )  is universally covering. 

(2) (~Y-*,o~*) is universally covering. 

PROOF. (1) ~ (2): Let N be a left Q-module, and let #: F ~ N be an o~-cover. 

Then /~ induces a Q-homomorphism # ' :  Q @RF--* N defined by # ' :  Z(q~| x~) 

~Eq~(xi#). By Proposition 1.1, Q | F e o~ and indeed is canonically isomorphic 

to QF. Thus we have a Q-epimorphism #": QF--* N given by #": Eq~xi ~Eqi(xd~). 

Also QF ~_ E:(F) ,  and so QF e o~*. 

Now let G e o~-*, and let a e Home(G, N). Then there is a z e HomR(G, F) with 

a = z/l, and z induces a Q-homomorphism G-+ QF. Indeed, if g e G and q e Q, 

then there is an I e  Sr with Iq ~_ R; hence (aqg)z = aq(gz) for all a e I. Set 

x = (qg)z - q(gz). Then Ix = 0; so xe3"(QF)  = 0, which implies that (qg)z 

= q(gz). Therefore tr -- z#" as Q-homomorphisms, and thus QF e re-~(~*). 

Now suppose that K is a ~--*-pure submodule of QF contained in ker (/z"). Then 
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we have an R-monomorphism F/[F N K] ~ QF/K, and hence F/[F n K] ~ .  

But F c~ K ___ ker (p); so F n K = 0. Since F is large in QF, K = 0. Therefore 

It" is an ~-*-cover. 

(2)=~(1):  Let 6 : V ( M ) ~ M  be the restriction of  7M:U(M)~Ea-(M) 

to V(M). Since yM~ rc - l (~ ) ,  then 6 E n-I(~-~). By (2), we have an ~-*-cover 

p ' : Q F ' ~ o U ( M  ). Let F be the inverse image of V(M) under #' ,  and let 

p: RF "-* RV(M) be the restriction o f # '  to F. Then F s ~- and # is an epimorphism. 

The composite map It6: F ~ M is also an epimorphism. If  G ~ ~- and a: G ~ M, 

then there is a homomorphism ~,: G ~ V(M) with cr = ~6. Furthermore, ~k 

induces ~ ' :  Q(Q | ~ t2U(M) defined by ~ ' :  E(q~ | 9i) ~ Eqi(gi~). By Pro- 

position 1.1, Q | G e ~ * ,  and hence there is a Q-homomorphism ~b: Q | G ~ F '  

with ~k' = q~#'. Also, Gis embedded in Q @RG, and G~b#' = G~' = G~ ~ V(M); 

so G~b ~ F, and ~bp6 = ~6 = a. Hence It6 ~ n-1 (o~-). 

Now let K be a J ' -pure  submodule of F contained in ker (#6). We first note 

that Fit n (QK)#' = (F n QK)#. Indeed, if y = x# = (Zq~ki)#' E F# n (QK)#' ;  

then 0 = (x - Zq,ki)#'; so x - Zq~ki ~ ker (#') _~ F. Therefore Eqiki ~ F n QK, 

which implies that y ~ (F n QK)#. The reverse inclusion is trivial. 

Clearly F n QK ~_ K. If Zq~k~e F n QK, then I = n (R :  qi) ~ 5r and EIq~k~ c_ K. 

Thus (F ~ QK)/K ~ oq-. Since K is J--pure in F, it follows that K = F ~ QK. 

Now V(M) n (QK)#' = F# ~ (QK)#' = (F n QK)# = Kit ~_ ker (6). Therefore, 

if ~ e V(M) c~ (QK)it' and q ~ Q with q~ ~ V(M), then (q)cr = (1)q~ = (q~)6 = 0 

Since M is large in Eo-(M ), this implies that Q~ = 0, and so ~ = 0. Thus 0 = Kit, 

and hence K ___ kerO).  Also, (QK)#' = Q(KIt') = 0; so QK ~_ ker(#') .  

Let W/QK = J(QF/QK),  and let w = Zq~x~ ~ W. Then I = ~ (R: q~) belongs 

to La and aw ~ W n F for every a ~ I. Then there is an H ~ So with Haw ~_ 

Q K O F  = K, which implies that aw + K ~ ' ( F / K )  = 0. Therefore aw~K.  

Since this is true for any a ~ I, Iw ~ K, and hence w + K ~ ~-(QF]K). 

Since V(M) is large in U(M), V(M) is also large in QV(M). Since inverse images 

of large submodules are large, F/K is large in QF/K. Since F/K ~ ~ ,  this forces 

QF]K ~ ;  so by the above paragraph, QF/QK ~ .  Again, QV(M) is large in 

U(M); so QF/QK is large in F'/QK, which implies that F ' / Q K ~ .  Hence 

F'/QK ~ ~* .  Since K =_ QK =_ ker (it') and # '  is an ~*-cover ,  then K = 0. 

As a consequence of Theorem 3.4, we obtain the following major result of [3]. 

COROLLARY 3.5. The usual torsion theory for modules over an integral domain 

is universally covering. 
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PROOF. If R is an integral domain and (Y,  i f )  is the usual torsion theory, 

then Q ~ - ~ -  is a field. Therefore every Qg--module is a direct sum of copies of 

Qa  and hence is in ~-. Thus every Q~--module is in ~-*, i.e., (J-*, ~-*) is (trivially) 

universally covering. Hence the result follows from Theorem 3.4. 

As in [10], ( J - ,~ ' )  is called perfect if every left Q~--module is in ~,~ when 

considered as an R-module in the natural way. [6, Th. 4.3] and [10, Th. 13.1] 

give several conditions equivalent to (Y,  ~-) being perfect. 

We now obtain the following result of Banaschewski [1, p. 66]. 

COROLLARY 3.6. A perfect torsion theory is universally covering. 

PROOF. If ( Y , ~  ~-) is perfect, then every Q~--module is in ~-*; so (Y*,~-*)  is 

(trivially) universally covering. By Theorem 3.4, ( J - , ~ )  is also universally co- 

vering. 

Indeed, ~Z-(M) = V(M) whenever (J-,  ~-) is perfect. 

COROLLARY 3.7. I f  R ~ Q~- is a left localization and Q j-satisfies the as- 

cending chain condition on J-*-injective left ideals, then (J-,~')  is universally 

covering. In particular, if Qa- is noetherian, then (3J-, ~') is universally covering. 

PROOF. This follows by combining Theorem 3.4 with Theorems 1.2 and 2.4 

of  [11]. 

EXAMPLE 3.8. Let R = K IX, Y] be a commutative polynomial ring over 

a field K. The maximal ideal H = (X, Y) determines an idempotent filter 

.oq~n= {RI ~ R tI ~ H" for some n}. Let (J-u,~'n) be the hereditary torsion 

theory associated with ~e n. By [10, p. 40, Exercise 3], Q~n = R and (J 'n ,~-H) 

is not perfect. Since Q~-u = R is noetherian, Corollary 3.7 implies that (3" n, ~-n) 

Is universally covering; however, since (J-ri,~'n) is not perfect, Corollary 3.6 is 

not applicable to this situation. 

LEMMA 3.9. The following statements are equivalent. 

(1) Qa- has the ascending chain condition on J--pure left Q~--ideals. 

(2) Q~- has the ascending chain condition on J--injective left QfideaIs.  

(3) R has the ascending chain condition on ~---pure left ideals. 

PROOF. (1) =~ (2) follows from [6, Prop. 3.3]. 

(2) ~ (3): If  K1 c K2 c "" is an ascending chain of J--pure left ideals of R, 

then E~-(K1) c E~-(K2) c ... is an ascending chain of ~7--injective left Q~--ideals- 
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Thus for some m, Es-(Km) = E~-(Km+i) for i > 1. This implies that Km = K,,+i 

for i > 1. 

(3) * (1): If  K1 c K2 c ... is an ascending chain of Y-pure  left Qyidea ls ,  

set L i = R n K  i for each i. Since R/L i = R/(R n K i )  ~- (R + Ki)/K i ~_ Qg-/Kieo~" , 

it follows from (3) that L,, = Lm+ 1 . . . .  for some integer m. But KJL~ 

= Ki/(R n Ki) _~ (K i + R)/R ~ Qs-/R eJ - .  Consequently, K i = Es~(Li), and 

hence K m = Kin+ j f o r j  __> 1. 

A special case of [11, Theorem 2.4] now follows from Corollary 3.7. 

COROLLARY 3.10. I f  R--* Qg- is a left localization and if  any direct sum of  

injective modules in ~" is injective, then (3-, ~ )  is universally covering. 

PROOF. The direct sum hypothesis and [11, Th. 1.2] imply that R has the 

ascending chain condition on ~Y'-pure left ideals. But this implies that condition 

(3) of Lemma 3.9 holds. From Lemma 3.9(2), Proposition 3.3, and Corollary 3.7, 

it then follows that (Y,  o~) is universally covering. 

The hereditary torsion theories on R-mod are partially ordered by (3" ,  ~- ')  

< (3", o~) if and only if Y '  ~ Y .  

PROPOSITION 3.11. Let R ~  Qs- be a proper left localization. Then there 

exists a non-trivial, universally-covering torsion theory ( Y ' , o ~ ' )  <= (3- ,~ ' )  

with Qm-, = Q~-. 

PROOF. By [10, Th. 13.10], the set {IIQ~-I = Q~-} is an idempotent filter of  

left ideals which determines a torsion theory (Y',o~") such that Qg-,= Qa-" 

If (M: M ~ Q g - |  M: m ~ 1  | m, then ~7-'(M) = ker( (u)  by [10, Th. 13.1]; 

So ___ {M I ker ((M) = 0} _ o ~'. Hence o~" _ ~9", and (J- ' ,  ~ ' ) <  (3 - ,  o~-). Since 

Qg-/R is a nonzero member of 3- '  and R ~o~-', then (~y-',o~-') is non-trivial. By 

[6, Th. 4.3] and Corollary 3.6, every module has an o~'-cover. 

A theory (J-, o~-) is primary if it has no non-trivial theories smaller than itself. 

The primary theories are precisely those determined by simple left R-modules [2]. 

COROLLARY 3.12. I f  ( J , ~  ~') is primary and R ~ Q3- is a proper left localiza- 

tion, then (~--,~') is universally covering. 

THEOREM 3.13. I f  the functor Qg-( - )  is exact, then the following conditions 

are equivalent: 

(1) e is closed under talcing direct sums. 

(2) (2,~, ~ )  is perfect. 

(3) (~-,~-) is universally covering. 

(4) .LP contains a cofinal subset of f initely-generated left ideals 
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PROOf. In view of [6, Th. 4.3], [10, Th. 13.1], and Corollary 3.6, we only need 

to prove (3):> (2). Let M be a Q:-module,  and let m ~ f ( R M ) .  Then Q:m 

~- Q ~ - / I ~ f .  If  Q:/I  # O, let ~t: ~ ' ( Q : / I ) ~ Q : / I  be an ~-cover  by (3). Then 

there exists a a~HOmR(Q: ,~ ' (Q: / I ) )  such that 0q~=v, where v: Q :  ~ Q: / I  is 

canonical. Then I~ ~ 0; for otherwise a induces a nonzero homomorphism 

from Q:/I  into ~r(Q:/I). Hence there exists x e I such that 0 # Q:xa ~_ Ia 

_ ker(p). But Q j x e e r  by [6, Th. 4.5], which contradicts the definition of #. 

If A a has a cofinal subset of projective right ideals, then Q~( _ ) is right exact 

[6, Th. 4.5]; thus we have the following two corollaries of Theorem 3.13. 

COROLLARY 3.14. I f  R is left hereditary then (J-,~,~) is universally covering if  

and only if it is perfect. 

COROLLARY 3.15. I f  R is left semi-hereditary and if ~q~ has a cofinal subset of 

finitely generated left ideals, then ( J ' , ~ )  is universally covering 

4. Products of covers 

We need an elementary, but useful, result on the ordering. For the next result 

only, we drop our assumption that all torsion theories mentioned are faithful. 

PROPOSITION 4.1. Let (3",~,) be a faithful hereditary torsion theory, and let 

(5"', ~")  be a hereditary torsion theory on R-mod with associated filters, 

and ~ ' ,  respectively. Then the following conditions are equivalent: 

(i) (Y,~- )  < ( J - ' , ~ ' ) .  

(2) ~ - n : '  = o. 

(3) R/I ~ #r, for all proper left ideals 1 ~ ~ .  

(4) Q : / K ~ '  for all K ~ Q :  with R n K ~ .  

(5) RM is ~J'-injective if and only if ExtR(R/H,M ) = 0 for every left ideal 

H e ~ ' .  

PROOF. (2) <:> (3) :> (1) ::> (5) can be easily verified by the reader. 

(5)=>(4): Let K % Q :  with RCaK~Ar and assume that Q y / K s ~  ~''. 

We first claim that ExtR(R/H, K) = 0 for any left ideal H ~ ~ ca ~cr Indeed, 

if H ~ A  ~ c a ~ '  and if 0 ~ H o m R ( H , K  ) then by the J'-injectivity of Q~- there i s 

an R-homomorphism fl: R ~ Qsr such that fl In = ~. 

Then fl induces a homomorphism fl': R/H -> Q:/K.  Since im fl' e 5 "  (3 ~,~' = 0, 

then Rfl c_ K. Therefore HomR (R, K) -~ HOmR (H, K) ~ 0 is exact; so it follows 

that EXtR (R/H, K) = O. 
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By (5), this implies that K is in ~. In particular, [-K + R]/K ~ Qg-/K ~ 

On the other hand, [-K + R]/K _~ R/[K n R] 6 3-. Since 57- o o~- = 0, we must 

have K + R = K, and so R _ K. Thus Q~-/K is a nonzero homomorphic image 

of  Q~-/R; so Q~-/K ~ 3-, which contradicts the ~7--purity of K in Qs-. 

(4) => (3): Let I ~ L a  with I # R. Since Q ~ / I r  by (4), then W/I 

= J-'(Q~r/1) ~ O. Then I G R n W; so R n W e ~ .  But Qg-/W ~ ~ ' ,  and hence 

by (4) we have W = Q~-. Thus Qg-/I ~ 3"', which surely implies (3). 

Let 5 ~ be the smallest torsion class containing all the simple modules, and let 

(Se, ~)  be a torsion theory. Then 6 a is hereditary [-2]. 

THEOREM 4.2. For a universally-covering theory (3r',~'), the following 

conditions are equivalent: 

(1) The product o f f - n e a t  homomorphisms is J--neat. 

(2) The product of f -covers  is gr'-neat. 

(3) (J-,  ~-) < (6 e, cg). 

PROOF. (1) => (2) since every o-~'-cover is ~7"-neat. 

(2) =~ (3): By Proposition 4.1, it suffices to show that, for any eK ~ Q~ 

with R n K ~ ,  soc(Q~-/K) ~. O. Pick such a module K, and let f} index the 

family of R-submodules V~ of Q~- properly containing K. For  each i ef~, let 

M i = VJK, and let/~i : Fi ~ Mi be an ~'-cover. Set M = IIMi, F = I-IFs, and 

# = 1-lps. For  each i ~ ~ and each canonical epimorphism Ils: F s ~ VJK = M s 

there exists a homomorphism trs: V~ ~ F s such that trs# s = vi. Define 

tre Hom e (K, F) by a: k ~ (kai). Then Ka  ~ ker (p), and the 0-homomorphism 

Q a - ~  M extends a#. By (2), # is J--neat;  so there is a submodule W of  Q~ 

properly containing K and a z e Home(W, F) extending a. It is now sufficient to 

show that W/K is completely reducible. 

Let 0 ~  V/K~_ W/K. For some j e f f ,  V / K = M j .  Let z ~ : F ~ F ]  be the 

canonical projection. If p = a j -  (z Iv)n], then Kp = 0. Therefore p induces 

a homomorphism p'  : V/K ~ F~. Since R/[R n K] and Q~-/R both belong t o ~ - ,  

then Q ~ - / [ R n K ] ~ - .  Therefore V / [ R n K ] e ~ ' ,  and so V / K ~ - .  Since 

F~ ~ o~-, this means that p'  = 0, and thus p = 0. Therefore (z Iv)zrfl~ = tr~#] = v] ; 

hence ~rcfl~i : W ~ V/K induces a homomorphism W/K ~ V/K, the restriction of 

which to V/K is the identity. Hence V/K is a direct summand of W/K. Since this 

is true for all Is, W/K is completely reducible. 

(3) =- (1): Let {~b, : N s ~ M s l i ~fl} be any family of~--neat  homomorphisms. 
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Set M = H M  i, N = 1-INi, and q~ = 1-I~bi. Fo r  each i e f~, let it i : M ~ M i and 

n~ : N ~ Ni be the canonical  projections.  Let  U be a J - -dense  submodule  of  an 

a rb i t ra ry  left R -modu le  V, and let tr ~ H o m  R (U, N).  Assume that  there is a sub- 

module  H '  o f  V proper ly  containing U and a h o m o m o r p h i s m  f l ' : H ' ~ M  

extending a~b. Since V / U  ~ J ,  then H ' / U  has a simple submodule  H / U  by (3). 

Let  fl be the restriction of  fl' to H.  Then fl proper ly  extends trtk, and,  for  each 

i ~ f~, flrq extends trc~lr i = an'i~ i . Since each ~b i is Y-nea t ,  there are proper  exten- 

sions ffi o f  arc~ in H.  Since H / U  is simple, the domains  o f  the ~i must  all equal  H.  

Define ~ e H o m R ( H , N )  by ~k: h ~ (h~i ) .  Then ~k proper ly  extends tr, which 

proves  that  ~b is Y-nea t .  

The fol lowing result generalizes Theorem 4.1 of  [-4]. 

COROLLARY 4.3. Let  (~-- ,~ ' )  be universally-covering, and assume that Q s ( - )  

is exact. Then  the product  o f  J~-covers is an ~'-cover i f  and only i f  ( Y , ~ )  

<= (~,~).  

PROOF. " O n l y  i f " :  This fol lows directly f rom Theorem 4.2 and the fact that  

every ~--cover  is J ' - n e a t .  

" I f " :  Let  ( l ~ i : F i - ~ M i l  i Ef~} be a family of  N-covers .  Let  F = H F  i 

M = H M i ,  and # = 1-I#i. For  each i e f~, let 7r i : F ~ Ft be the canonical  pro-  

jection. Then/~  clearly satisfies the definition of  an ~--precover ,  and ~t is J - - n e a t  

by Theorem 4.2. I f  W is a J ' - p u r e  submodule  of  F contained in ker (#), then W is 

in r by Proposi t ion  2.10. Since Q~-(_) is exact, Wrc i is also in in 8 for  each i ~ 

[6, Theo rem 4.5]. Since each/~i is an N - c o v e r  and W~ i ~_ ker (#3, then W~ i = 0 

for  each i e f~. Therefore  W = 0. This proves that  # is an ~--cover .  
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